Intensity modulated radiotherapy (IMRT) is a form of radiation therapy that conforms closely to the targeted tumor shape and allows higher doses of radiation to be delivered while minimizing toxicity to surrounding healthy tissues.

MEDICAL POLICY CRITERIA

I. Intensity modulated radiotherapy (IMRT) of the head, neck, thyroid, and central nervous system may be considered medically necessary when any of the following criteria are met (Note: This policy addresses specific indications only. Please see Medicine, Policy No. 167 for requests where only through IMRT can published dose/volume constraints be met for organs at risk):

 A. There is documented prior radiation treatment to the planned target volume; or

 B. Definitive radiotherapy for pediatric (less than 21 years of age) central nervous system (CNS) tumors (for palliative treatment of pediatric CNS and adult CNS, see Medicine, Policy No. 167); or

 C. For the treatment of head and neck cancers (Primary and recurrent cancers [excluding skin cancer] arising from the oral cavity and lip, larynx, hypopharynx,
D. Lymphomas in the head and neck region, excluding follicular and malt and marginal zone lymphomas; or

E. For the treatment of thyroid cancer when any of the following criteria are met:
 1. Locoregional recurrence; or
 2. Anaplastic thyroid cancer; or
 3. Node positive or node-recurrent; or
 4. There is documentation of muscle invasion.

II. Intensity-modulated radiotherapy (IMRT) is considered not medically necessary for the treatment of tumors of the head, neck, thyroid, and central nervous system not meeting Criterion I. above (Please see Medicine, Policy No. 167 for requests where only through IMRT can published dose/volume constraints be met for organs at risk).

NOTE: A summary of the supporting rationale for the policy criteria is at the end of the policy.

POLICY GUIDELINES

ORGANS AT RISK

Organs at risk are defined as normal tissues whose radiation sensitivity may significantly influence treatment planning and/or prescribed radiation dose. These organs at risk may be particularly vulnerable to clinically important complications from radiation toxicity. At-risk organs may include temporal lobe, hippocampus, brain stem, spinal cord, cochlea and eye structures including optic nerve and chiasm, lens, retina and lacrimal gland.

LIST OF INFORMATION NEEDED FOR REVIEW

REQUIRED DOCUMENTATION:

It is critical that the list of information below is submitted for review to determine if the policy criteria are met. If any of these items are not submitted, it could impact our review and decision outcome. Quality assurance for 3D and IMRT submitted plans are not required with a preauthorization request.

- Clinical history
- Physical/chart notes
- Relevant imaging reports documenting that the policy criteria are met for medical necessity.

CROSS REFERENCES

1. Charged-Particle (Proton) Radiotherapy, Medicine, Policy No. 49
2. Intensity Modulated Radiotherapy (IMRT) of the Thorax, Abdomen, and Pelvis, Medicine, Policy No. 165
3. Intensity Modulated Radiotherapy (IMRT) for Breast Cancer, Medicine, Policy No. 166
4. Intensity Modulated Radiotherapy (IMRT) for Tumors in Close Proximity to Organs at Risk, Medicine, Policy No. 167
BACKGROUND

RADIATION TECHNIQUES

Conventional External Beam Radiotherapy

Over the past several decades, methods to plan and deliver RT have evolved in ways that permit more precise targeting of tumors with complex geometries. Most early trials used two-dimensional treatment planning based on flat images and radiation beams with cross-sections of uniform intensity that were sequentially aimed at the tumor along two or three intersecting axes. Collectively, these methods are termed “conventional external beam RT.”

Three-Dimensional Conformal Radiotherapy

Treatment planning evolved by using three-dimensional images, usually from computed tomography (CT) scans, to delineate the boundaries of the tumor and discriminate tumor tissue from adjacent normal tissue and nearby organs at risk for radiation damage. Computer algorithms were developed to estimate cumulative radiation dose delivered to each volume of interest by summing the contribution from each shaped beam. Methods also were developed to position the patient and the radiation portal reproducibly for each fraction and immobilize the patient, thus maintaining consistent beam axes across treatment sessions. Collectively, these methods are termed three-dimensional conformal radiotherapy (3D-CRT).

Intensity-Modulated Radiotherapy

IMRT, which uses computer software and CT and magnetic resonance imaging (MRI) images, offers better conformality than 3D-CRT, as it is able to modulate the intensity of the overlapping radiation beams projected on the target and to use multiple shaped treatment fields. It uses a device (a multileaf collimator [MLC]) which, coupled to a computer algorithm, allows for “inverse” treatment planning. The radiation oncologist delineates the target on each slice of a CT scan and specifies the target’s prescribed radiation dose, acceptable limits of dose heterogeneity within the target volume, adjacent normal tissue volumes to avoid, and acceptable dose limits within the normal tissues. Based on these parameters and a digitally reconstructed radiographic image of the tumor and surrounding tissues and organs at risk, computer software optimizes the location, shape and intensities of the beams ports, to achieve the treatment plan’s goals.

Increased conformality may permit escalated tumor doses without increasing normal tissue toxicity and thus may improve local tumor control, with decreased exposure to surrounding, normal tissues, potentially reducing acute and late radiation toxicities. Better dose homogeneity within the target may also improve local tumor control by avoiding underdosing within the tumor and may decrease toxicity by avoiding overdosing.

Because most tumors move as patients breathe, dosimetry with stationary targets may not accurately reflect doses delivered within target volumes and adjacent tissues in patients. Furthermore, treatment planning and delivery are more complex, time consuming, and labor intensive for IMRT than for 3D-CRT. Thus, clinical studies must test whether IMRT improves tumor control or reduces acute and late toxicities when compared with 3D-CRT.
BRAIN TUMORS

The standard approach to the treatment of brain tumors depends on the type and location of tumor. For glioblastoma multiforme, a malignant high-grade tumor, treatment is multimodal, with surgical resection followed by adjuvant radiotherapy (RT) and chemotherapy.[1]

For benign and low-grade brain tumors, gross total resection remains the primary goal. However, RT may be used in selected cases. Some examples are when total resection is not possible, when a more conservative surgical approach may be necessary to achieve long-term treatment goals, and with atypical tumors that may need RT even after gross total resection to reduce the risk of local recurrence. Therefore, RT, either definitive or in the postoperative adjuvant setting, remains an integral component in the management of residual, recurrent, and/or progressive benign and low-grade brain tumors for maximizing local control.[2]

Brain metastases occur in up to 40% of adults with cancer and can shorten survival and detract from quality of life. Many patients who develop brain metastases will eventually die of progressive intracranial disease. Among patients with good performance status, controlled extracranial disease, favorable prognostic features, and a solitary brain metastasis, randomized studies have shown that surgical excision followed by whole-brain radiotherapy (WBRT) or stereotactic radiotherapy to the post resection cavity prolongs survival.[3] Stereotactic radiosurgery (SRS) may be able to replace surgery in certain circumstances, delivering obliteratively high single doses to discrete metastases. For bulky cerebral metastases, level one evidence has also shown that delivering a higher radiation dose with an SRS boost is beneficial in addition to standard WBRT. The use of a concomitant boost with IMRT during WBRT has been attempted to improve overall local tumor control without the use of SRS to avoid additional planned radiation after WBRT (“phase II” or SRS) and its additional labor and expense.[3]

HEAD AND NECK TUMORS

Head and neck cancers account for approximately 3% to 5% of cancer cases in the United States. The generally accepted definition of head and neck cancers includes cancers arising from the oral cavity and lip, larynx, hypopharynx, oropharynx, nasopharynx, paranasal sinuses and nasal cavity, salivary glands, and occult primaries in the head and neck region. Cancers generally not considered as head and neck cancers include uveal and choroidal melanoma, cutaneous tumors of the head and neck, esophageal cancer, and tracheal cancer. Thyroid cancers are also addressed in this policy. EBRT is uncommonly used in the treatment of thyroid cancers but may be considered in patients with anaplastic thyroid cancer and for locoregional control in patients with incompletely resected high-risk or recurrent differentiated (papillary, follicular, or mixed papillary-follicular) thyroid cancer.

EVIDENCE SUMMARY

Multiple-dose planning studies have generated 3D-CRT and intensity-modulated radiotherapy (IMRT) treatment plans from the same scans, then compared predicted dose distributions within the target and in adjacent organs at risk. Results of such planning studies show that IMRT improves on 3D-CRT with respect to conformality to, and dose homogeneity within, the target. Dosimetry using stationary targets generally confirms these predictions. Thus, radiation oncologists hypothesized that IMRT may improve treatment outcomes compared with those of 3D-CRT. However, these types of studies offer indirect evidence on treatment benefit from IMRT, and it is difficult to relate results of dosing studies to actual effects on health outcomes.
Comparative studies of radiation-induced side effects from IMRT versus alternative radiation delivery are probably the most important type of evidence in establishing the benefit of IMRT. Such studies would answer the question of whether the theoretical benefit of IMRT in sparing normal tissue translates into real health outcomes. Single-arm series of IMRT can give some insights into the potential for benefit, particularly if an adverse effect that is expected to occur at high rates is shown to decrease by a large amount. Studies of treatment benefit are also important to establish that IMRT is at least as good as other types of delivery.

Evidence from randomized controlled trials comparing IMRT with other radiation techniques is needed in order to establish safety (e.g., toxicity) and efficacy (i.e., impact on clinical outcomes such as survival) of IMRT in the treatment of tumors of the central nervous system (CNS).

The available evidence on IMRT for treatment of tumors of CNS comes from observational studies (retrospective comparisons, single arm studies) with methodological limitations such as small sample sizes and heterogenous study populations. A significant number of the available studies are dose planing reports. Only a limited number of studies address clinical outcomes (e.g., overall survival, tumor control). These studies report inconsistent findings. However, the available studies consistently report better sparing of healthy tissues and reduced toxicity in IMRT-treated patients.

HIGH-GRADE MALIGNANT CNS TUMORS

Systematic Reviews

Amelio (2010) conducted a systematic review on the clinical and technical issues of using IMRT in newly diagnosed glioblastoma multiforme (GBM). The articles included in the review were through December 2009 and included 17 studies (nine related to dosimetric data and technical considerations, seven to clinical results, and one to both dosimetric and clinical results) for a total of 204 treated patients and 148 patient datasets used in planning studies. No randomized controlled studies (RCTs) were identified, and a meta-analysis was not performed.

For the six papers related to planning studies that compared either 3D-CRT versus IMRT, one study showed a noticeable difference between 3D-CRT and IMRT for the planning target volume (PTV) (13% benefit in V95 [volume that received 95% of the prescribed dose] from IMRT, p<0.001); the remaining studies suggested that IMRT and 3D-CRT provide similar PTV coverage, with differences between 0 and 1%. Target dose conformity was found to be improved with IMRT.

The organs at risk (OAR) typically under consideration in the studies were the brainstem, optic chiasm, optic nerves, lens and retina. In general, IMRT allowed better sparing of the OAR than 3D-CRT but with considerable variation from study to study.

The eight studies that included clinical results included three retrospective, one prospective Phase I and IV prospective Phase II single institution studies. Of these eight studies, two used conventional total dose and dose per fraction, two used a hypofractionated regimen, and in the remaining, a hypofractionated scheme using a simultaneous integrated boost. Chemotherapy was administered in six of eight series, concomitantly with radiation and in the adjuvant phase. Median follow-up ranged from 8.8 and 24 months. Almost all patients (96%) were able to complete the treatment without interruption/discontinuation due to toxicity. Acute toxicity was reported as negligible with grade-3 side effects observed in only two studies at rates of 7% and
12%. Grade-4 toxicity was recorded in only one series with an absolute rate of 3%. Data for late toxicities were available in 6/8 studies, with one study recording grade 4 side effects with an incidence of 20%. One-year and two-year overall survival (OS) varied between 30% and 81.9% and between 0% and 55.6%, respectively. When OS was reported as a median time, its value ranged from 7 to 24 months. Progression-free survival (PFS) ranged from 0% and 71.4% at one year and 0% and 53.6% at two years. Median PFS was reported as ranging from 2.5 to 12 months.

The authors also carried out a comprehensive qualitative comparison with data reported in the literature on similar non-IMRT clinical studies and offered the following conclusions. The results of the planning comparisons showed 3D-CRT and IMRT techniques provide similar results in terms of target coverage, IMRT is somewhat better than 3D-CRT in reducing the maximum dose to the OAR, although the extent varied from case to case, IMRT is clearly better than 3D-CRT in terms of dose conformity and sparing of the healthy brain at medium to low doses and that (in general) there were no aspects where IMRT seemed worse than 3D-CRT.

This evidence is limited by a number of factors. There is an absence of comparative studies with clinical outcomes, all of the studies were small in size, from a single institution, a majority of patients (53%) were retrospectively analyzed, and the administration of chemotherapy was variable across studies.

Nonrandomized Studies

A representative sample of the comparative studies on dose planning and the single-arm studies with clinical outcomes are discussed below.

Paulsson (2014) compared treatment failure rates in GBM patients treated with IMRT or 3D conformal RT with differing target margins (the size of the region between tumor and edge of the planning target volume). This comparison indirectly evaluated IMRT and older techniques, because the use of IMRT has been accompanied by changes in treatment planning. In 161 patients, treatment margins were not associated with treatment failure. There was no difference in treatment failure between IMRT and 3D-CRT.

Chen (2013) assessed whether IMRT improved clinical outcomes compared with 3D-CRT in patients with GBM in a retrospective study of 54 patients. The median follow-up was 13 months. Of the 54 patients, 50 (92.6%) completed the combined modality treatment (patients underwent postoperative IMRT or 3D-CRT with concurrent and adjuvant temozolomide). The one-year overall survival rate (OS) was 79.6%. The pattern of failure was predominantly local. A comparative analysis revealed that no statistical difference was observed between the IMRT group (n = 21) and the 3D-CRT group (n = 33) for one-year OS (89.6% vs. 75.8%, P = 0.795), or one-year progression-free survival (PFS) (61.0% vs. 45.5%, P = 0.867). In dosimetric comparison, IMRT seemed to allow better sparing of organs at risk than 3D-CRT (P = 0.050, P = 0.055). However, there was no significant difference for toxicities of irradiation between the IMRT group and the 3D-CRT group. The authors concluded that preliminary results suggest that delivering standard radiation doses by IMRT is unlikely to improve local control or overall survival for GBM compared with 3D-CRT.

MacDonald (2007) compared the dosimetry of IMRT and 3D-CRT in 20 patients treated for high-grade glioma. Prescription dose and normal-tissue constraints were identical for the 3D-CRT and IMRT treatment plans. The IMRT plan yielded superior target coverage as compared
with the 3D-CRT plan. The IMRT plan reduced the percent volume of brainstem receiving a
dose greater than 45 Gy by 31% (p=0.004) and the percent volume of brain receiving a dose
greater than 18 Gy, 24 Gy, and 45 Gy by 10% (p=0.059), 14% (p=0.015), and 40% (p<
or=0.0001), respectively. With IMRT, the percent volume of optic chiasm receiving more than
45 Gy was reduced by 30.4% (p=0.047). As compared with 3D-CRT, IMRT significantly
increased the tumor control probability (p< or=0.0005) and lowered the normal-tissue
complication probability for brain and brain stem (p<0.033).

Narayana (2006) reported the outcomes of 58 consecutive patients with high-grade gliomas
treated with IMRT.[9] GBM accounted for 70% of cases and anaplastic gliomas for the
remainder. Surgery consisted of biopsy alone in 26% of patients and of those that underwent
resection, 63% had total or near total resection and 37% had partial resection. Eighty percent
of patients received adjuvant chemotherapy. Median follow-up was 24 months. Acute
neurotoxicities were grade 1 or 2 in 36% of patients, grade 3 in 7%, and grade 4 in 3%. Late
toxicities were grade 1 or 2 in 10%, grade 3 in 7%, and no grade four or five. Freedom from
late neurotoxicity at 24 months was 85%. Median OS for the anaplastic astrocytomas was 36
months and nine months for the GBM group. From these data, the authors concluded that the
use of IMRT in high-grade gliomas does not appear to improve survival

Narayana (2006)[9] also performed a comparison of the IMRT treatment plans with 3D plans
performed in 20 patients out of 58 total in that case series. Regardless of tumor location, IMRT
did not improve PTV target coverage compared to 3D planning. IMRT decreased the maximum
dose to the spinal cord, optic nerves, and eye by 16%, 7%, and 15%, respectively. These data
indicate that IMRT may result in decreased late toxicities.

Huang (2002) compared ototoxicity with use of conventional (2D) radiotherapy (n=11) versus
IMRT (n=15) in 26 pediatric patients with medulloblastoma.[10] All of the patients also received
chemotherapy. When compared to conventional radiotherapy, IMRT delivered 68% of the
radiation dose to the auditory apparatus, but full doses to the desired target volume. Median
follow-up for audiometric evaluation was 51 months (9-107 months) for the conventional
radiotherapy group and 18 months (8-37 months) for the group that received IMRT. Thirteen
percent of the IMRT group had grade 3 or 4 hearing loss, compared to 64% of the
conventional radiotherapy group (p<0.014).

Section Summary

Dosimetry studies have demonstrated lower radiation exposure to organs at risk with IMRT
treatment plans compared with 3D-CRT treatment plans. Limited comparative evidence has
shown lower rates of hearing loss with IMRT than with conventional radiotherapy. The
evidence appears to be consistent in supporting lower neurotoxicity associated with IMRT. No
conclusions can be made about comparative efficacy.

BENIGN CNS TUMORS

Reddy (2012) published a prospective phase II trial (n=24) of patients with newly diagnosed
glioblastoma multiforme treated with hypofractionated IMRT with concurrent adjuvant
temozolomide.[11] After a median follow-up of 14 months, there were no grade 3 or higher
nonhematologic toxicities and the median overall survival was 16.6 months. There were six
patients with suspected recurrence. The authors concluded that treatment was comparable to
current standards of care.
Milker-Zabel (2007) reported the results of the treatment of complex-shaped meningiomas of the skull base with IMRT in 94 patients.\cite{12} Patients received radiotherapy as primary treatment (n=26) postoperatively for residual disease (n=14) or after local recurrence (n=54). Tumor histology was World Health Organization grade 1 in 54.3%, grade two in 9.6%, and grade 3 in 4.2%. Median follow-up was 4.4%. Overall local tumor control was 93.6%. Sixty-nine patients had stable disease (by computed tomography [CT]/magnetic resonance imaging [MRI]), and 19 had a tumor volume reduction after IMRT. Six patients had local tumor progression on MRI a median of 22.3 months after IMRT. In 39.8% of patients, preexisting neurologic deficits improved. Treatment-induced loss of vision was seen in one of 53 re-irradiated patients with a grade 3 meningioma nine months after retreatment with IMRT.

Mackley (2007) reported outcomes of treating pituitary adenomas with IMRT.\cite{13} A retrospective chart review was conducted on 34 patients treated between 1998 and 2003 at the Cleveland Clinic. Median follow-up was 42.5 months. Radiographic local control was 89%, and among patients with secretory tumors, 100% had a biochemical response. One patient required salvage surgery for progressive disease, resulting in a clinical PFS of 97%. One patient who received more than 46 Gy experienced optic neuropathy eight months after radiation.

Sajja (2002) reported the outcomes of 35 patients with 37 meningiomas treated with IMRT.\cite{14} Tumor histology was benign in 35 and atypical in two tumors. The median CT/MRI follow-up was 19.1 months (range 6.4-62.4 months). Fifty-four percent of the meningiomas had been previously treated with surgery/radiosurgery prior to IMRT, and 46% were treated with IMRT, primarily after a diagnosis was established by CT/MRI. Three patients had local failure after treatment. No long-term complications from IMRT were documented among the 35 patients.

Uy (2002) assessed the safety and efficacy of IMRT in the treatment of intracranial meningioma in 40 patients treated between 1994 and 1999.\cite{15} Twenty-five patients received IMRT after surgery either as adjuvant therapy for incomplete resection or for recurrence, and 15 patients received definitive IMRT after a presumptive diagnosis of meningioma on imaging. Thirty-two patients had skull base lesions and eight had nonskull base lesions. Follow-up ranged from 6 to 71 months (median 30 months). Defined normal structures generally received a significantly lower dose than the target. The most common acute CNS toxicity was mild headache, usually relieved with steroids. One patient experienced Radiation Therapy Oncology Group (RTOG) Grade 3 acute CNS toxicity, and two experienced Grade 3 or higher late CNS toxicity, with one possible treatment-related death. No toxicity was observed with mean doses to the optic nerve/chiasm up to 47 Gy and maximum doses up to 55 Gy. Cumulative five-year local control, PFS, and OS were 93%, 88%, and 89%, respectively.

Section Summary

The evidence on IMRT for the treatment of benign brain tumors includes noncomparative trials and case series. Results are consistent with low radiation toxicity but have not demonstrated better tumor control or improved survival with IMRT vs other radiotherapy techniques. The dose-planning studies evaluating IMRT in patients with malignant tumors should generalize to patients with benign brain tumors because the benefit of minimizing radiation toxicity to sensitive brain areas is identical.

BRAIN METASTASES
A retrospective study, published by Zhou in 2014, was designed to evaluate the feasibility of WBRT plus simultaneous integrated boost (SIB) with IMRT for inoperable brain metastases of NSCLC. Twenty-nine NSCLC patients with 87 inoperable brain metastases were included. All patients received WBRT at a dose of 40 Gy and SIB boost with IMRT at a dose of 20 Gy concurrent with WBRT in the fourth week. Prior to each fraction of image-guided (IG) IMRT boost, on-line positioning verification and correction were used to ensure that the set-up errors were within 2 mm by cone beam CT in all patients. The one-year intracranial control rate (ICR), local brain failure rate (BFR), and distant BFR were 63%, 14%, and 19%, respectively. The two-year ICR, local BFR, and distant BFR were 42%, 31%, and 36%, respectively. Both median intracranial PFS and median OS were 10 months. Six-month, one-year, and two-year OS rates were 66%, 41%, and 14%. Patients with Score Index for Radiosurgery in Brain Metastases (SIR) greater than five, number of intracranial lesions less than three and history of epidermal growth factor receptor–tyrosine kinase inhibitor (EGFR-TKI) treatment had better survival. Radiation necrosis was observed in three (3.5%) lesions after radiotherapy. Grades 2 and 3 cognitive impairment with grade two radiation leukoencephalopathy were observed in four (14%) and four (14%) patients. No dosimetric parameters were found to be associated with these late toxicities. Patients who received EGFR-TKI treatment had higher incidence of grades 2 to 3 cognitive impairment with grade 2 leukoencephalopathy. This evidence suggests WBRT plus SIB with IMRT is a tolerable treatment for NSCLC patients with inoperable brain metastases. However, the evidence does not allow conclusions as to its efficacy.

Edwards (2010) reported outcomes on the use of whole brain radiotherapy (WBRT) with an IMRT boost in 11 patients with metastatic disease to the brain ranging from 25-80 mm in maximum diameter. Patients were excluded if they had more than four metastases. Histologies of the metastases included primary lung (n=5), breast (n=4), colon (n=1), and kidney (n=1). There were no acute or subacute complications. All tumors showed response on a one-month post-radiotherapy scan. Median follow-up was four months. Four of the 11 patients died of systemic disease six to nine months after radiotherapy. The remaining patients were alive with no evidence of progression of the treated brain disease or local recurrence at two to nine months after radiotherapy. No brain complications occurred to date.

HEAD AND NECK CANCERS

Systematic Reviews and Technology Assessments

Ursino (2017) published a systematic review of 22 studies (total N=1311 patients) evaluating swallowing outcomes in patients treated with 3D-CRT or IMRT for head and neck cancer. The heterogeneity of the population limited analysis, but reviewers concluded that IMRT produced markedly better results than 3D-CRT in terms of swallowing impairments, aspiration, pharyngeal residue, and functional parameters, especially when swallowing-related organs at risk were specifically taken into account during IMRT treatment planning. The analysis was limited by a lack of standardized evaluation questionnaires, objective instrumental parameter scores, amount and consistency of bolus administration, and timing of evaluations.

In 2014, Marta reported on a systematic review and meta-analysis of five prospective Phase III randomized trials comparing IMRT to 2D-RT or 3D-CRT for head and neck cancer. A total of 871 patients were randomized in these five studies to IMRT (n=434) versus 2D-RT or 3D-CRT (n=437). Xerostomia grade 2-4 was found to be significantly lower in IMRT than 2D-RT and 3D-CRT for all studies (hazard ratio = 0.76; 95% confidence interval: 0.66, 0.87; p<0.001). Locoregional control and overall survival was similar between IMRT and 2D-RT or 3D-CRT.
A comparative effectiveness review was published in 2010 on radiotherapy treatment for head and neck cancers by Samson from the BlueCross BlueShield Association (BCBSA) Technology Evaluation Center under contract with the Agency for Healthcare Research and Quality (AHRQ). This report noted that based on moderate evidence, IMRT reduces late xerostomia and improves quality of life domains related to xerostomia compared with 3D-CRT. The report also noted that no conclusions on tumor control or survival could be drawn from the evidence comparing IMRT with 3D-CRT. An update of the BCBSA report published in 2014 was consistent with and strengthened the findings of the original review on late xerostomia.

Other systematic reviews have concluded similar findings as the previous systematic reviews for treatment of head and neck cancers.

Randomized Controlled Trials

Of the five phase three RCTs included in the meta-analysis by Marta, only one trial (Gupta, 2012) compared IMRT to 3D-CRT. In 2016, long-term results from this trial were published. This study included 60 patients with squamous cell carcinoma of the head and neck and was powered to detect a 35% difference in toxicity between the treatments (85% vs 50%). The proportion of patients with salivary gland toxicity was lower in the IMRT group (59%) compared to the 3D-CRT group (89%; \(p=0.009\)). The percentage of patients with substantial weight loss was significantly lower in the IMRT group at one and two years. There were no significant differences between the two groups for acute dysphagia, mucositis, dermatitis, or requirements for tube feeding. Xerostomia decreased over follow-up in both groups, but significant differences in late salivary toxicity persisted through five years. At two years after treatment, grade 2 or worse xerostomia was 0% in the IMRT group compared with 27.7% following 3D-CRT (\(p=0.017\)). At five years, salivary toxicity was 0% in the IMRT group compared with 16.7% following 3D-CRT (\(p=0.041\)). Locoregional control and overall survival were not significantly different between the two groups.

An RCT by Pow (2006) on IMRT for nasopharyngeal carcinoma (NPC) was published in 2006. However, as previously noted, this RCT compared IMRT with conventional 2D-RT. In 2011, Nutting (2011) reported on the PARSPORT randomized phase three trial, which also compared conventional RT with parotid-sparing IMRT in 94 patients with T1-4, N0-3, M0 pharyngeal squamous cell carcinoma. One year after treatment, grade 2 or worse xerostomia was reported in 38% of patients in the IMRT group, which was significantly lower than the reported 74% in the conventional RT group. Xerostomia continued to be significantly less prevalent two years after treatment in the IMRT group (29% vs 83%, respectively). At 24 months, rates of locoregional control, nonxerostomia late toxicities, and overall survival did not differ significantly.

The largest RCT on IMRT compared to 2D-RT was by Peng (2012). The trial included 616 patients with NPC. At a median follow-up of 42 months (range 1-83 months), patients in the IMRT group had significantly lower radiation-induced toxicities. The five-year overall survival rate was 79% in the IMRT group compared to 67.1% in the 2D-RT group.

Nonrandomized Studies

Choi (2018) described a single institution experience using IMRT to re-irradiate head and neck cancers. A total of 73 patients received re-irradiation to the recurrent gross tumor and tight margins. The median interval between initial radiotherapy and re-irradiation was 31 months. Locoregional recurrence after re-RT occurred in 37 patients, with a median survival of 33
months. Of evaluable patients, 14% reported clinically significant acute and 22% reported clinically significant late toxicities. The authors concluded that local control and survival were similar to historical data.

Also in 2018, Bišof assessed radiation modalities in 24 patients with carcinoma of the nasopharynx. Authors compared IMRT with simultaneous integrated boost (IMRT-SIB) parotid gland-sparing 3D-CRT (ConPas 3D-CRT). The IMRT-SIB group received significantly lower mean dose, dose to 50% parotid glands volume, and maximal dose to the spinal cord compared to the ConPas 3D-CRT group. The IMRT-SIB group also received superior coverage of planning target volumes. However, there were no significant differences between groups with respect to three-year OS (77% versus 81% for IMRT-SIB and ConPas 3D-CRT groups, respectively) or disease-free survival (51.9 and 70.7% for the IMRT-SIB and ConPas 3D-CRT groups, respectively).

Qiu (2017) published a retrospective, single-center study comparing 2D-conventional radiation therapy (2D-CRT) and IMRT as treatments for NPC in children and adolescents. All 176 patients (74 treated with 2D-CRT, 102 with IMRT) identified for the study were between 7 and 20 years old and treated at single institution. The OS rate at five years was significantly higher for IMRT than 2D-CRT (90.4% vs 76.1%, respectively; hazard ratio, 0.30; 95% confidence interval, 0.12 to 0.78; \(p=0.007 \)), as well as the five-year disease-free survival rate (85.7% vs 71.2%, respectively; hazard ratio, 0.47; 95% confidence interval, 0.23 to 0.94; \(p=0.029 \)). Grade 2, 3, and 4 xerostomia (52.7% vs 34%, respectively; \(p=0.015 \)) and hearing loss (40.5% vs 22.5%, respectively; \(p=0.01 \)) were also significantly lower with IMRT than with 2D-CRT. The duration of follow-up for late-onset radiation-induced toxicity and small sample size are limitations of the report.

A 2016 cross-sectional study by Huang included patients who had survived more than five years after treatment for NPC. Of 585 NPC survivors, data were collected on 242 patients who met study selection criteria (no history of tumor relapse or second primary cancers, cancer-free survival >5 years, completion of the self-reported questionnaire). Treatments were given from 1997 to 2007, with transition to the IMRT system in 2002. One hundred patients were treated with IMRT. Prior to the institution of IMRT, treatments included 2D-RT (n=39), 3D-CRT (n=24), and 2D-RT plus 3D-CRT boost (n=79). Patients had scheduled follow-ups at three- to four-month intervals until five-years posttreatment; then, at six-month intervals thereafter. Late toxicities (e.g., neuropathy, hearing loss, dysphagia, xerostomia, neck fibrosis) were routinely assessed at clinical visits. At the time of the study, the mean follow-up was 8.5 years after 2D-RT or 3D-CRT, and 6.4 years after IMRT. The IMRT group had statistically and clinically superior results for both clinician-assessed and patient-assessed (global quality of life, cognitive functioning, social functioning, fatigue, and 11 scales of the head and neck module) outcomes with moderate effect sizes after adjusting for covariates (Cohen’s d range, 0.47-0.53). Late toxicities were less severe in the IMRT group, with adjusted odds ratios of 3.2, 4.8, 3.8, 4.1, and 5.3 for neuropathy, hearing loss, dysphagia, xerostomia, and neck fibrosis, respectively. No significant differences in late toxicities were observed between the 2D-RT and the 3D-CRT groups.

In 2009, Vergeer published a report that compared IMRT and 3D-CRT for patient-rated acute and late xerostomia, and health-related quality of life (HRQOL) among patients with head and neck squamous cell carcinoma (HNSCC). The study included 241 patients with HNSCC (cancers arising from the oral cavity, oropharynx, hypopharynx, nasopharynx, or larynx and those with neck node metastases from squamous cell cancer of unknown primary) treated with
bilateral irradiation with or without chemotherapy. All patients were included in a program that prospectively assessed acute and late morbidity and HRQOL at regular intervals. Before October 2004, all patients were treated with 3D-CRT (n=150); starting in October 2004, 91 patients received IMRT. The use of IMRT resulted in a significant reduction of the mean dose to the parotid glands (27 gray [Gy] vs 43 Gy; p<0.001). During radiation, grade 3 or higher xerostomia at six weeks was significantly less with IMRT (20%) than with 3D-CRT (45%). At six months, the prevalence of grade 2 or higher xerostomia was significantly lower after IMRT (32%) versus 3D-CRT (56%). Treatment with IMRT also had a positive effect on several general and head and neck cancer-specific HRQOL dimensions.

De Arruda (2006) reported on their experience treating 50 patients with oropharyngeal cancer (78% stage IV) with IMRT between 1998 and 2004.[35] Eighty-six percent also received chemotherapy. The authors noted this represents the largest single-institution report for use of IMRT in this tumor. This study found two-year progression-free survival of 98% and regional progression-free survival of 88%, results similar to the 85% to 90% rates for locoregional control reported in other published studies. The rate for grade 2 xerostomia was 60% for acute and 33% for chronic (after nine months or more of follow-up); these rates are lower than the 60% to 75% generally reported with radiation therapy.

Hoppe (2008) reported on experience treating 37 patients with cancer of the paranasal sinuses, nasal cavity, and lacrimal glands with postoperative IMRT between 2000 and 2007.[36] In this report with 28-month median follow-up, there was no early or late grade 3 or 4 radiation–induced ophthalmologic toxicity. Two-year local progression-free survival was 75%, and overall survival was 80%.

Braam (2006) reported on a phase II study that compared IMRT to conventional RT in oropharyngeal cancer.[37] This study appeared to use 2D radiation therapy. The mean dose to the parotid glands was 48 Gy for RT and 34 Gy for IMRT. Both stimulated parotid flow rate and parotid complication (more than 25% decrease in flow rate) were greater in the RT group. At six months after treatment, 56% of IMRT patients and 81% of RT patients were found to have parotid complications.

Rusthoven (2008) compared outcomes with use of IMRT and -CRT in patients with oropharyngeal cancer.[38] In this study, in which 32 patients were treated with IMRT and 23 with 3D-CRT, late xerostomia occurred in 15% of the IMRT patients and 94% of the 3D-CRT patients. There was also a trend toward improved locoregional control of the tumor with IMRT.

Hodge (2007) compared outcomes for patients with oropharyngeal cancer in the pre-IMRT era to those obtained in the IMRT era.[39] In this study of 52 patients treated by IMRT, the late xerostomia rate was 56% in the IMRT patients, compared to 63% in those that did not receive IMRT. The authors noted that outcomes in these patients improved at their institution since the introduction of IMRT but that multiple factors may have contributed to this change. They also noted that even in the IMRT-era, the parotid-sparing benefit of IMRT cannot always be used; for example, in patients with bulky primary tumors and/or bilateral upper cervical disease.

Rades (2007) reported on 148 patients with oropharyngeal cancer treated with radiation therapy.[40] In this study, late xerostomia was noted in 17% of those treated with IMRT compared with 73% of those who received 3D-CRT and 63% of those who received standard radiation therapy.
Additional publications of IMRT for head and neck cancers consist of a number of small case series and non-randomized comparisons that generally report favorable outcomes of this treatment.[41-62]

Section Summary

In general, the evidence evaluating intensity-modulated radiotherapy (IMRT) for the treatment of head and neck cancer suggests that tumor control rates with IMRT are at minimum similar to those achieved with other non-IMRT techniques. In addition, although results are not uniform across all studies, most of the recent studies show a significant improvement in the rate of late xerostomia, a clinically significant complication of therapy that may result in decreased quality of life. Thus, published evidence shows an improvement in net health outcomes compared with non-IMRT methods.

THYROID CANCER

There are a small number of studies on use of IMRT for the treatment of thyroid cancer. In thyroid cancer, RT is generally used for two indications. The first indication is treatment of anaplastic thyroid cancer, and the second indication is potential use for locoregional control in patients with incompletely resected high-risk or recurrent differentiated (papillary, follicular, or mixed papillary-follicular) thyroid cancer. Anaplastic thyroid cancer occurs in a minority (<5%) of thyroid cancer.

The largest series comparing IMRT with 3D-CRT was published by Bhatia (2009)[63] This study reviewed institutional outcomes for anaplastic thyroid cancer treated with 3D-CRT or IMRT for 53 consecutive patients. Thirty-one (58%) patients were irradiated with curative intent. Median radiation dose was 55 Gy (range, 4-70 Gy). Thirteen (25%) patients received IMRT to a median 60 Gy (range, 39.9-69.0 Gy). The Kaplan-Meier estimate of overall survival at one year for definitively irradiated patients was 29%. Patients without distant metastases receiving 50 Gy or higher had superior survival outcomes; in this series, use of IMRT versus 3D-CRT did not influence toxicity.

Schwartz (2009) reviewed institutional outcomes for patients treated for differentiated thyroid cancer with postoperative conformal EBRT.[64] This was a single-institution retrospective review of 131 consecutive patients with differentiated thyroid cancer who underwent RT between January 1996 and December 2005. Histologic diagnoses included 104 papillary, 21 follicular, and six mixed papillary-follicular types. Thirty-four patients (26%) had high-risk histologic types and 76 (58%) had recurrent disease.

Extraglandular disease spread was seen in 126 patients (96%), microscopically positive surgical margins were seen in 62 patients (47%), and gross residual disease was seen in 15 patients (11%). Median RT dose was 60 Gy (range, 38-72 Gy). Fifty-seven patients (44%) were treated with IMRT to a median dose of 60 Gy (range, 56-66 Gy). Median follow-up was 38 months (range, 0-134 months). Kaplan-Meier estimates of locoregional relapse-free survival, disease-specific survival, and overall survival at four years were 79%, 76%, and 73%, respectively. On multivariate analysis, high-risk histologic features, M1 (metastatic) disease, and gross residual disease were predictors for inferior disease-specific and overall survival. IMRT did not impact survival outcomes but was associated with less frequent severe late morbidity (12% vs 2%, respectively), primarily esophageal stricture.
In 2011, Foote published a small case series (n=10) that reported the outcomes of the 10 anaplastic thyroid carcinoma (ACT) patients treated with an aggressive treatment combining IMRT, radiosensitizing, and adjuvant chemotherapy. The study found improved outcomes, including survival in stages IVA and IVB regionally confined ATC. Benefit in patients with stage IVC (metastatic) disease as well as the optimal chemotherapy regimen to use in conjunction with IMRT remains uncertain.[65]

Section Summary

Limited evidence exists on use of IMRT for thyroid cancer. The published literature consists of small case series with limitations. However, there is consensus that the use of IMRT for thyroid tumors may be appropriate in some circumstances such as for anaplastic thyroid carcinoma or for thyroid tumors that are located near critical structures (e.g., salivary glands, spinal cord). There is indirect evidence for the potential of IMRT to reduce harms. Therefore, IMRT may be considered for the treatment of thyroid cancers located in close proximity to organs at risk (esophagus, salivary glands, spinal cord) and three-dimensional conformal radiotherapy planning is not able to meet dose volume constraints for normal tissue tolerance.

PRACTICE GUIDELINE SUMMARY

NATIONAL COMPREHENSIVE CANCER NETWORK

Central Nervous System

National Comprehensive Cancer Network (NCCN) guidelines for the CNS (v.1.2019) state that "Highly conformal fractionated RT techniques (eg 3D-CRT, IMRT, VMAT, proton therapy) are recommended to spare critical structures and uninvolved tissue.”[66]

Head and Neck

The NCCN guidelines (v.2.2019) on head and neck cancers comment that, that “IMRT has been shown to be useful in reducing long-term toxicity in oropharyngeal, paranasal sinus, and nasopharyngeal cancers by reducing the dose to salivary glands, temporal lobes, auditory structures (including cochlea), and optic structures.” The guidelines also indicate: “[t]he application of IMRT to other sites (e.g., oral cavity, larynx, hypopharynx, salivary glands) is evolving and may be used at the discretion of treating physician.

The NCCN guidelines on melanoma (v.2.2019) state “[n]ewer radiation modalities, such as IMRT may lower the risk of toxicity of adjuvant nodal radiation and should be considered when available and where appropriate.”[67]

Thyroid

For thyroid cancer, the NCCN guideline (v.1.2019) states that EBRT/IMRT may be considered for locoregional recurrence “For select patients with unresectable, non-radioiodine-avid, and progressive disease” and “structurally persistent/recurrent locoregional or distant metastatic disease not amenable to RAI therapy” that is iodine-refractory and unresectable or soft tissue metastases. Adjuvant EBRT/IMRT with or without chemotherapy is recommended for the treatment of anaplastic thyroid carcinoma.[68]

AMERICAN COLLEGE OF RADIOLOGY AND AMERICAN SOCIETY FOR THERAPEUTIC RADIATION AND ONCOLOGY
The American College of Radiology (ACR) and the American Society for Therapeutic Radiation and Oncology (ASTRO) note that IMRT is a widely used treatment option for many indications including head and neck tumors. This guideline was last amended in 2014.\[69\]

NATIONAL CANCER INSTITUTE

The National Cancer Institute (NCI) indicates IMRT may be appropriate for head and neck cancers in several instances.\[70,71\] For nasopharyngeal cancer, NCI indicates IMRT results in a lower incidence of xerostomia and may provide a better quality of life than conventional 3D or 2D RT.\[72\] IMRT may also be appropriate in select cases of recurrent nasopharyngeal cancer per NCI.\[72\] Finally, to prevent or reduce the extent of salivary gland hypofunction and xerostomia, NCI indicates parotid-sparing IMRT is recommended as a standard approach in head and neck cancers, if oncologically feasible.\[73\]

SUMMARY

There is enough research to show that for the treatment of the central nervous system, intensity-modulated radiotherapy (IMRT) may provide improved outcomes for patients and lead to less adverse events compared to other radiotherapy techniques. Therefore, IMRT may be considered medically necessary for the treatment of central nervous system tumors when policy criteria are met.

There is enough research to show that intensity-modulated radiotherapy (IMRT) provides tumor control rates comparable to existing radiotherapy techniques for head and neck cancers. In addition, research shows improvements in complications. Therefore, IMRT may be considered medically necessary for the treatment of head and neck cancers when policy criteria are met.

The current research on the use of intensity-modulated radiotherapy (IMRT) for the treatment of thyroid cancer is limited. However, IMRT may reduce the risk of exposure of radiation to critical nearby structures, such as the spinal cord, salivary glands, and esophagus. Therefore, IMRT may be considered medically necessary for the treatment of thyroid cancer when policy criteria are met.

For all other indications, intensity-modulated radiotherapy (IMRT) has not been shown to improve net health outcomes compared to other treatment modalities. Therefore, except in the select group of patients identified in the policy criteria, IMRT is not medically necessary for the treatment of all other central nervous system, head, neck, and thyroid cancers.

REFERENCES

31. Bisof, V, Rakusic, Z, Bibic, J, Grego, T, Soce, M. Comparison of intensity modulated radiotherapy with simultaneous integrated boost (IMRT-SIB) and a 3-dimensional conformal parotid gland-sparing radiotherapy (ConPas 3D-CRT) in treatment of

58. Turaka, A, Li, T, Nicolaou, N, et al. Use of a conventional low neck field (LNF) and intensity-modulated radiotherapy (IMRT): no clinical detriment of IMRT to an anterior

75. BlueCross BlueShield Association Medical Policy Reference Manual "Intensity-Modulated Radiotherapy: Cancer of the Head and Neck or Thyroid." Policy No. 8.01.48

CODES

NOTE: The correct code to use for image fusion performed to provide enhanced delineation of target and normal critical structures is CPT code 77399 (Unlisted procedure, medical radiation physics, dosimetry and treatment devices, and special services); however, it is considered part of the treatment planning.

<table>
<thead>
<tr>
<th>Codes</th>
<th>Number</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>CPT</td>
<td>77301</td>
<td>Intensity modulated radiotherapy plan, including dose volume histograms for target and critical structure partial tolerance specification</td>
</tr>
<tr>
<td></td>
<td>77338</td>
<td>Multi-leaf collimator (MLC) device(s) for intensity modulated radiation therapy (IMRT), design and construction per IMRT plan (new code 1/1/10)</td>
</tr>
<tr>
<td></td>
<td>77385</td>
<td>Intensity modulated radiation treatment deliver (IMRT), includes guidance and tracking, when performed; simple</td>
</tr>
<tr>
<td></td>
<td>77386</td>
<td>;complex</td>
</tr>
<tr>
<td>HCPCS</td>
<td>G6015</td>
<td>Intensity modulated treatment delivery, single or multiple fields/arcs, via narrow spatially and temporally modulated beams, binary, dynamic mlc, per treatment session</td>
</tr>
<tr>
<td></td>
<td>G6016</td>
<td>Compensator-based beam modulation treatment delivery of inverse planned treatment using 3 or more high resolution (milled or cast) compensator, convergent beam modulated fields, per treatment session</td>
</tr>
</tbody>
</table>

Date of Origin: July 2019